Search results for "Depolarization ratio"
showing 6 items of 6 documents
2018
Abstract. Low planetary wave activity led to a stable vortex with exceptionally cold temperatures in the 2015–2016 Arctic winter. Extended areas with temperatures below the ice frost point temperature Tice persisted over weeks in the Arctic stratosphere as derived from the 36-year temperature climatology of the ERA-Interim reanalysis data set of the European Centre for Medium-Range Weather Forecasts (ECMWF). These extreme conditions promoted the formation of widespread polar stratospheric ice clouds (ice PSCs). The space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellit…
Inelastic neutron and low-frequency Raman scattering in niobium-phosphate glasses: the role of spatially fluctuating elastic and elasto-optic constan…
2011
We investigate the low-frequency enhancement of vibrational excitations ('boson peak') in niobium-phosphate glasses through the combination of inelastic neutron and polarization-resolved Raman scattering. The spectra of these glasses reveal an enhancement of the vibrational density of states and of the cross section for spontaneous Raman scattering in the frequency range below 150?cm ? 1. A recent theoretical model that is based on fluctuating elastic and elasto-optic (Pockels) constants provides a unified description of the measured neutron and Raman spectra, including the depolarization ratio.
Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM
2009
Three groundâÂ�Â�based Raman lidars and an airborne highâÂ�Â�spectralâÂ�Â�resolution lidar (HSRL) were operated during SAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinctionâÂ�Â�toâÂ�Â�backscatter ratio, and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosounding of meteorological parameters complemented the groundâÂ�Â�based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three groundâÂ�Â�based lidars during a heavy du…
Vibrational analysis of Ni(II)- and Cu(II)-octamethylchlorin by polarized resonance Raman and Fourier transform infrared spectroscopy
2001
We measured the polarized resonance Raman spectra of Cu(II)-2,2,7,8,12,13,17,18-octamethylchlorin in CS2 at various excitation wavenumbers in a spectral region covering the Qy, Qx and Bx optical absorption bands. Additionally, we measured the FTIR-Raman spectrum of the highly overcrowded spectral region between 1300 and 1450 cm−1. The spectral decomposition was carried out by a self-consistent global fit to all spectra obtained. The thus identified Raman and IR lines were assigned by comparison with the resonance Raman spectra of Cu(II)-octaethylporphyrin, by utilizing their depolarization ratio dispersions and by a normal mode analysis. The latter was based on a modified transferable molec…
Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum
2011
International audience; We perform multiplex coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy with a picosecond pulsed laser and a broadband supercontinuum (SC) generated in photonic crystal fiber. CARS signal stability is achieved using an active fiber coupler that avoids thermal and mechanical drifts. We obtain multiplex CARS spectra for test liquids in the 600–2000 cm−1 spectral range. In addition we investigate the polarization dependence of the CARS spectra when rotating the pump beam linear polarization state relative to the linearly polarized broad stokes SC. From these polarization measurements we deduce the Raman depolarization ratio, the resonant versus nonresonant …
Depolarization�ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
2009
Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9°N, –6.9°E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34…